Dirichlet-to-Neumann Map Method with Boundary Cells for Photonic Crystals Devices
نویسندگان
چکیده
In a two-dimensional (2D) photonic crystal (PhC) composed of circular cylinders (dielectric rods or air holes) on a square or triangular lattice, various PhC devices can be created by removing or modifying some cylinders. Most existing numerical methods for PhC devices give rise to large sparse or smaller but dense linear systems, all of which are expensive to solve if the device is large. In a previous work (Z. Hu et al., Optics Express, 16, 17383-17399, 2008), an efficient Dirichlet-to-Neumann (DtN) map method was developed for general 2D PhC devices with an infinite background PhC to take full advantage of the underlying lattice structure. The DtN map of a unit cell is an operator that maps the wave field to its normal derivative on the cell boundary and it allows one to avoid computing the wave field in the interior of the unit cell. In this paper, we extend the DtN map method to PhC devices with a finite background PhC. Since there is no bandgap effect to confine the light in a finite PhC, a different technique for truncating the domain is needed. We enclose the finite structure with a layer of empty boundary and corner unit cells, and approximate the DtN maps of these cells based on expanding the scattered wave in outgoing plane waves. Our method gives rise to a relatively small and sparse linear systems that are particularly easy to solve.
منابع مشابه
Modeling two-dimensional anisotropic photonic crystals by Dirichlet-to-Neumann maps.
For photonic crystals (PhCs) and related devices, it is useful to calculate the Dirichlet-to-Neumann (DtN) map of a unit cell, which maps the wave field to its normal derivative on the boundary. The DtN map can be used to avoid further calculations in the interiors of the unit cells and formulate mathematical problems on the cell boundaries. We develop a method to approximate the DtN map for tw...
متن کاملMultipole Dirichlet-to-Neumann map method for photonic crystals with complex unit cells.
The periodicity of photonic crystals can be utilized to develop efficient numerical methods for analyzing light waves propagating in these structures. The Dirichlet-to-Neumann (DtN) operator of a unit cell maps the wave field on the boundary of the unit cell to its normal derivative, and it can be used to reduce the computation to the edges of the unit cells. For two-dimensional photonic crysta...
متن کاملModeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps
Efficient numerical methods for analyzing photonic crystals (PhCs) can be developed using the Dirichlet-to-Neumann (DtN) maps of the unit cells. The DtN map is an operator that takes the wave field on the boundary of a unit cell to its normal derivative. In frequency domain calculations for band structures and transmission spectra of finite PhCs, the DtN maps allow us to reduce the computation ...
متن کاملComputing Photonic Crystal Defect Modes by Dirichlet-to-Neumann Maps.
We develop an efficient numerical method for computing defect modes in two dimensional photonic crystals based on the Dirichletto- Neumann (DtN) maps of the defect and normal unit cells. The DtN map of a unit cell is an operator that maps the wave field on the boundary of the cell to its normal derivative. The frequencies of the defect modes are solved from a condition that a small matrix is si...
متن کاملDirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves
For finite two-dimensional (2D) photonic crystals given as periodic arrays of circular cylinders in a square or triangular lattice, we develop an efficient method to compute the transmission and reflection spectra for oblique incident plane waves. The method relies on vector cylindrical wave expansions to approximate the Dirichlet-to-Neumann (DtN) map for each distinct unit cell, and uses the D...
متن کامل